Abstract

A novel technique is presented for the accurate, rapid, high frequency, predictive modeling of parallel plate capacitors with gridded plates manufactured in a multilayer low temperature cofired ceramic (LTCC) process. The method is empirical in nature and is based on the concept of incrementally constructing the model for a structure from well characterized individual building blocks. Building blocks are characterized by the use of test structures and measurements, and are modeled using passive lumped circuit elements. This method is applied to the predictive modeling of deeply embedded gridded parallel plate capacitor structures. The procedure has been experimentally verified, with accurate predictions of behavior obtained up to the second self resonance for large area gridded parallel plate capacitors. Since lumped element circuits are generated by this method, structure prediction speed is determined by circuit size and simulator small signal analysis time. The method is versatile and is well suited for circuit design applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.