Abstract

We analyze the performance of a density functional model obtained by combining the Perdew–Burke–Erzenrhof (PBE) generalized gradient functional with a predetermined amount of exact exchange for predicting vertical electronic excitation energies within a time-dependent approach. Four molecules, namely, CO, H2CO, (CH3)2CO, and C2H4, have been chosen as benchmark cases. Our results show that this model (PBE0) provides accurate excitations both to valence and Rydberg states. Furthermore, the results are numerically close to those obtained using asymptotically correct exchange-correlation functionals. The performance of the PBE0 model for predicting excitation energies in larger molecules is assessed for benzene, pyridine, and naphthalene. Here, the PBE0 model provides results which are in fairly good agreement with experimental data and of similar quality to those obtained by more sophisticated (and time-consuming) post-Hartree–Fock methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.