Abstract

Tissue-equivalent phantom is becoming widespread as a substitute in the biological field to verify optical theories, test measuring systems and study the tissue performances for varying boundary conditions, sample size and shape at a quantitative level. Compared with phantoms made with Intralipid solution, ink and other liquid substances, phantom in solid state is stable over time, reproducible, easy to handle and has been testified to be a suitable optical simulator in the visible and near-infrared region. We present accurate determination of the complex refractive index (RI) of a solid tissueequivalent phantom using extended derivative total reflection method (EDTRM). Scattering phantoms in solid state were measured for p-polarized and s-polarized incident light respectively. The reflectance curves of the sample as a function of incident angle were recorded. The real part of RI is directly determined by derivative of the reflectance curve, and the imaginary part is obtained from nonlinear fitting based on the Fresnel equation and Nelder-Mead simplex method. The EDTRM method is applicable for RI measurement of high scattering media such as biotissue, solid tissue-equivalent phantom and bulk material. The obtained RI information can be used in the study of tissue optics and biomedical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.