Abstract

Ribo-seq, a technique for deep-sequencing ribosome-protected mRNA fragments, has enabled transcriptome-wide monitoring of translation in vivo. It has opened avenues for re-evaluating the coding potential of open reading frames (ORFs), including many short ORFs that were previously presumed to be non-translating. However, the detection of translating ORFs, specifically short ORFs, from Ribo-seq data, remains challenging due to its high heterogeneity and noise. We present ribotricer, a method for detecting actively translating ORFs by directly leveraging the three-nucleotide periodicity of Ribo-seq data. Ribotricer demonstrates higher accuracy and robustness compared with other methods at detecting actively translating ORFs including short ORFs on multiple published datasets across species inclusive of Arabidopsis, Caenorhabditis elegans, Drosophila, human, mouse, rat, yeast and zebrafish. Ribotricer is available at https://github.com/smithlabcode/ribotricer. All analysis scripts and results are available at https://github.com/smithlabcode/ribotricer-results. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.