Abstract

Regulation of multiple reaction modules is quite common in molecular computation and synthetic genetic circuits through chemical reactions, as is always a headache for that sequential execution of modules goes against the intrinsically parallel nature of chemical reactions. Precisely switching multiple reaction modules both on and off acts as the core role in programming chemical reaction systems. Unlike setting up physical compartments or adding human intervention signals, we adopt the idea of chemical oscillators based on relaxation oscillation, and assign corresponding clock signal components into the modules to be regulated as catalysts. We mainly demonstrate our design process of oscillator model under the regulation task of three modules, and provide a suitable approach for automatic loop termination of the whole system. Analysis and numerical simulation are directly based on dynamical equations of the oscillator model, which can be translated into corresponding chemical reaction networks through mass-action kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.