7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/icassp.2004.1326215
Copy DOIPublication Date: May 17, 2004 |
Citations: 107 |
The techniques of using wireless cellular networks to locate mobile stations have recently received considerable interest. The paper addresses the problem of maximum likelihood (ML) location estimation using (uplink) time-of-arrival (TOA) measurements. Under the standard assumption of Gaussian TOA measurement errors, ML location estimation is a nonconvex optimization problem in which the presence of local minima makes the search of the globally optimal solution hard. To circumvent this difficulty, we propose to approximate the ML problem by relaxing it to a convex optimization problem, namely semidefinite programming. Simulation results indicate that this semidefinite relaxation location estimator provides mean square position error performance close to the Cramer-Rao lower bound for a wide range of TOA measurement error levels.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.