Abstract

We evaluated the accuracy of amplitude gating PET (AG-PET) compared with phase gating PET (PG-PET) in relation to respiratory motion patterns based on a phantom analysis. We used a NEMA IEC body phantom filled with an (18)F solution with a 4:1 sphere-to-background radioactivity ratio (12.6 and 2.97 kBq/mL). PET/CT scans were acquired in a motionless and moving state on a Biograph mCT. The respiratory movements were simulated by four different waveform patterns consisting of ideal breathing, breathing with a pause period, breathing with a variable amplitude and breathing with a changing baseline. AG-PET selects the narrow bandwidth containing 20 % of the respiratory cycle. PG-PET was reconstructed with five gates. The image quality was physically assessed using the percent contrast (Q H,10mm), background variability (N 10mm) recovery coefficient (RC), and sphere volumes. In regular motion patterns with ideal breathing and breathing with a pause period, the Q H,10mm, RC and sphere volumes were not different between AG-PET and PG-PET. In the variable amplitude pattern, the Q H,10mm of AG-PET was higher than that of PG-PET (35.8 vs 28.2 %), the RC of AG-PET was higher than that of PG-PET and sphere volume of AG-PET was smaller than that of PG-PET (6.4 vs 8.6 mL). In the changing baseline pattern, the Q H,10mm of AG-PET was higher than that of PG-PET (42.4 vs 16.7 %), the RC of AG-PET was higher than that of PG-PET and sphere volume of AG-PET was smaller than that of PG-PET (6.2 vs 9.8 mL). The N 10mm did not differ between AG-PET and PG-PET, irrespective of the motion pattern. Amplitude gating PET is considered to be more accurate than phase gating PET for examining unstable respiratory motion patterns, such as those involving a variable amplitude or changing baseline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.