Abstract

Accuracy in determination of coordinates for image having simple shapes is considered as one of important and significant parameters in metrological optoelectronic systems such as autocollimators, stellar sensors, Shack-Hartmann sensors, schemes for geometric calibration of digital cameras for aerial and space imagery, various tracking systems. The paper describes a mathematical model for a measuring stand based on a collimator which projects a test-object onto a photodetector of an optoelectronic device. The mathematical model takes into account characteristic noises for photodetectors: a shot noise of the desired signal (photon) and a shot noise of a dark signal, readout and spatial heterogeneity of CCD (charge-coupled device) matrix elements. In order to reduce noise effect it is proposed to apply the Wiener filter for smoothing an image and its unambiguous identification and also enter a threshold according to brightness level. The paper contains a comparison of two algorithms for determination of coordinates in accordance with energy gravity center and contour. Sobel, Pruitt, Roberts, Laplacian Gaussian, Canni detectors have been used for determination of the test-object contour. The essence of the algorithm for determination of coordinates lies in search for an image contour in the form of a circle with its subsequent approximation and determination of the image center. An error calculation has been made while determining coordinates of a gravity center for test-objects of various diameters: 5, 10, 20, 30, 40, 50 pixels of a photodetector and also signalto-noise ratio values: 200, 100, 70, 20, 10. Signal-to-noise ratio has been calculated as a difference between maximum image intensity of the test-object and the background which is divided by mean-square deviation of the background. The accuracy for determination of coordinates has been improved by 0.5-1 order in case when there was an increase in a signal-to-noise ratio. Accuracy improvement due to increase of a diameter in a test-object is typical for large signal-to-noise ratios: 70 or more. The conducted investigations have made it possible to establish that the algorithm for determination of coordinates of the energy gravity center is more accurate in comparison with contour methods and requires less computing power (for the MatLab software package), which is related to discreteness while determining a contour.

Highlights

  • Электронные системы sensors, schemes for geometric calibration of digital cameras for aerial and space imagery, various tracking systems

  • The paper describes a mathematical model for a measuring stand based on a collimator which projects a test-object onto a photodetector of an optoelectronic device

  • The mathematical model takes into account characteristic noises for photodetectors: a shot noise of the desired signal and a shot noise of a dark signal, readout and spatial heterogeneity of CCD matrix elements

Read more

Summary

Electronic Systems

Приводится сравнение двух алгоритмов определения координат по энергетическому центру тяжести и по контуру. Произведен расчет погрешности определения координат центра тяжести для тест-объектов различных диаметров (5, 10, 20, 30, 40, 50 пикс) фотоприемника, а также значений отношения сигнал/шум 200, 100, 70, 20, 10. Отношение сигнал/шум рассчитывалось как разница максимальной интенсивности изображения тест-объекта и фона, деленная на среднеквадратическое отклонение фона. С увеличением отношения сигнал/шум улучшается точность определения координат на 0,5–1 порядок. Улучшение точности с увеличением диаметра тест-объекта характерно для больших отношений сигнал/шум: 70 и более. На основании проведенных исследований установлено, что алгоритм определения координат по энергетическому центру тяжести является более точным по сравнению контурными методами и требует меньших вычислительных мощностей (для программного пакета MatLab), что связано с дискретностью при определении контура. О. Сравнение по точности алгоритмов определения координат центров изображений в оптико-электронных приборах / Н. Feodortsau1) 1)Belarusian National Technical University (Minsk, Republic of Belarus)

Описание математической модели
Описание алгоритмов определения центра изображений
Описание алгоритма аппроксимации окружностью
Сравнение двух алгоритмов
Лапласиан гауссиана

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.