Abstract

The accuracy and precision of time-resolved one-dimensional temperature measurements using single-pulse one-dimensional N(2) vibrational coherent anti-Stokes Raman scattering along a line have been investigated in air in the temperature range from 300 to 1500 K. For this, the experimental spectra were taken in a high-temperature oven at atmospheric pressure. A planar BOXCARS phase-matching geometry was employed to generate the signal along a 6.16-mm line directed perpendicular to the beam propagation. With the used imaging optics, in this direction a spatial resolution of 86 mum was achieved. Depending on the set temperature, the agreement between the thermocouple readings and the mean values of the evalutated coherent anti-Stokes Raman-scattering temperatures is better than 40 K. The applicability of this new technique for the time-resolved measurement of temperature gradients is demonstrated along a line that crosses the flame front in a premixed laminar CH(4)-air flame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.