Abstract
Here, we present a strategy designed to permit access to the PDI triplet manifold that preserves the desirable colorfastness and visible light-absorption properties associated with these dyes. To this end, three new Pt(II) complexes each bearing two PDI moieties tethered to the metal center via acetylide linkages emanating from one of the PDI bay positions have been synthesized, structurally characterized, and thoroughly examined by nanosecond laser flash photolysis. Upon ligation, the bright singlet-state fluorescence of the PDI chromophore is quantitatively quenched, and no long wavelength photoluminescence is observed from the Pt(II)-PDI complexes in deaerated solutions. In each of the Pt-PDI chromophores, quantitatively similar transient absorption difference spectra were obtained; the only distinguishing characteristic is in their single-exponential lifetimes (tau = 246 ns, 1.0 micros, and 710 ns). Triplet-state sensitization experiments of "free" PDI-CCH using thioxanthone confirmed the PDI triplet state assignments in each of the Pt-PDI structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.