Abstract

Four A-D-A type small molecules using 4,4,9,9-tetrakis(4-hexylphenyl)- indaceno[1,2-b:5,6-b']dithiophene as central building block, bithiophene or terthiophene as π-bridges, alkyl cyanoacetate or rhodanine as end acceptor groups were synthesized and investigated as electron donors in solution-processed organic solar cells (OSCs). These molecules showed excellent thermal stability with decomposition temperatures over 360 °C, relatively low HOMO levels of -5.18 to -5.22 eV, and strong optical absorption from 350 to 670 nm with high molar extinction coefficient of 1.1 × 10(5) to 1.6 × 10(5) M(-1) cm(-1) in chloroform solution. OSCs based on blends of these molecules and PC71BM achieved average power conversion efficiencies of 2.32 to 5.09% (the best 5.32%) after thermal annealing. The effects of thiophene bridge length and end acceptor groups on absorption, energy level, charge transport, morphology, and photovoltaic properties of the molecules were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.