Abstract

The study of acceleration waves for a rarefied polyatomic gas is carried out in planar, cylindrical and spherical geometry referring to the rational extended thermodynamics theory with 14 moments. The case of a rarefied monatomic gas is determined as a limit case, and the role of geometry and molecular degrees of freedom is investigated. In addition, the behaviour of an acceleration wave travelling inside an oscillating gas bubble is modelled by the 14-moment PDE system under adiabatic condition. We show that dissipation combined with hyperbolicity tends to inhibit shock formation, and that the dynamic pressure cannot be zero inside the oscillating bubble. This fact can produce observable effects even in the Navier–Stokes approximation, if the gas exhibits high bulk viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.