Abstract

AbstractThe accelerated single electron transfer–degenerative chain transfer mediated living radical polymerization (SET–DTLRP) of vinyl chloride (VC) in H2O/tetrahydrofuran (THF) at 25 °C is reported. This process is catalyzed by sodium dithionite (Na2S2O4)‐sodium bicarbonate (NaHCO3). Electron transfer cocatalysts (ETC) 1,1′‐dialkyl‐4,4′‐bipyridinum dihalides or alkyl viologens were also employed in this polymerization. The resulting poly(vinyl chloride) (PVC) has a number‐average molecular weight (Mn) = 2,000–12,000, no detectable amounts of structural defects, and both active chloroiodomethyl and inactive chloromethyl chain ends. The molecular weight distribution of PVC obtained is Mw/Mn = 1.5. The surface active agents afford the final polymers as a powder and provide an acceleration of the rate of polymerization. The role of ETC is to accelerate the single electron transfer (SET) step, whereas THF enhances the degenerative chain transfer (DT) step. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6364–6374, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.