Abstract
It has been found that the optical properties and characteristics of exciton photoluminescence in thin organometallic perovskite layers, which are promising for application in high-efficiency solar cells, change when these layers are deposited on a crystalline silicon (c-Si) substrate. The observed shift of the photoluminescence band toward higher photon energies and a decrease in the lifetime of photoluminescence compared to layers deposited on a glass substrate with conducting metal oxide coating have been explained by the effect of an electric field that is formed in an organometallic perovskite/c-Si heterostructure and leads to the field ionization and the decay of excitons in the organometallic perovskite layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.