Abstract
The paper proposes a new automatic/algorithmic differentiation for the solutions to partial differential equations of parabolic type. In particular, we provide a higher order discretization scheme which is a natural extension of the standard automatic differentiation. A Brownian polynomial approach is introduced to avoid the Levy area simulation. The Lie brackets of vector fields associated with stochastic differential equation play an important role in the proposed scheme. The case that the test function is non-smooth but has Gateaux derivative is considered. Numerical examples are shown to confirm the effectiveness
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.