Abstract

We add to Galilean symmetries the transformations describing constant accelerations. The corresponding extended Galilean algebra allows, in any dimension D=d+1, the introduction of one central charge c while in D=2+1 we can have three such charges: c,θ and θ′. We present nonrelativistic classical mechanics models, with higher order time derivatives and show that they give dynamical realizations of our algebras. The presence of central charge c requires the acceleration square Lagrangian term. We show that the general Lagrangian with three central charges can be reinterpreted as describing an exotic planar particle coupled to a dynamical electric and a constant magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.