Abstract
We propose an approach to speed up the singular value decomposition (SVD) of very large rectangular matrices using the CSX600 floating point coprocessor. The CSX600-based acceleration board we use offers 50GFLOPS of sustained performance, which is many times greater than that provided by standard microprocessors. However, this performance can be achieved only when a vendor-supplied matrix-matrix multiplication routine is used and the matrix size is sufficiently large. In this paper, we optimize two of the major components of rectangular SVD, namely, QR decomposition of the input matrix and back-transformation of the left singular vectors by matrix Q, so that large-size matrix multiplications can be used efficiently. In addition, we use the Integrable SVD algorithm to compute the SVD of an intermediate bidiagonal matrix. This helps to further speed up the computation and reduce the memory requirements. As a result, we achieved up to 3.5 times speedup over the Intel Math Kernel Library running on an 3.2GHz Xeon processor when computing the SVD of a 100,000 × 4000 matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.