Abstract

In most systems, thermal diffusion is intrinsically slow with respect to mechanical relaxation. We devise here a generic approach to accelerate the relaxation of the temperature field of a one-dimensional object, in order to beat the mechanical time scales. This approach is applied to a micrometer-sized silicon cantilever, locally heated by a laser beam. A tailored driving protocol for the laser power is derived to quickly reach the thermal stationary state. The model is implemented experimentally yielding a significant acceleration of the thermal relaxation, up to a factor 30. An excellent agreement with the theoretical predictions is reported. This strategy allows a thermal steady state to be reached significantly faster than the natural mechanical relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.