Abstract

The problem of plane wave diffraction from pyramidal absorbers is considered. In a previous study, we have developed a hybrid method based on the R-matrix Fourier modal method (RFMM) and the mode-matching (MM) of fields for an efficient and robust analysis of this class of absorbers. The proposed technique benefits from the intrinsic discrete spectrum of the periodic structure in transverse directions and consequently avoids spatial discretization along the periodicity axes, thereby simulating the device with minimal computation cost. Nonetheless, the method suffers from the requirement for solving a full system of linear equations, which leads to large computation costs when the performance of the absorbers at high-frequency bands is modeled. In this paper, we present the methodology for taking advantage of the structure symmetries and the consequent modes parity to drastically reduce the computation costs. The example of VHP pyramidal absorbers is outlined and convergence analysis is performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.