Abstract
Data-driven constitutive modeling in continuum mechanics assumes that abundant material data are available and can effectively replace the constitutive law. To this end, Kirchdoerfer and Ortiz proposed an approach, which is often referred to as the distance-minimizing method. This method contains hyperparameters whose role remains poorly understood to date. Herein, we demonstrate that choosing these hyperparameters equal to the tangent of the constitutive manifold underlying the available material data can substantially reduce the computational cost and improve the accuracy of the distance-minimizing method. As the tangent of the constitutive manifold is typically not known in a data-driven setting, and as it can also change during an iterative solution process, we propose an adaptive strategy that continuously updates the hyperparameters on the basis of an approximate tangent of the hidden constitutive manifold. By several numerical examples we demonstrate that this strategy can substantially reduce the computational cost and at the same time also improve the accuracy of the distance-minimizing method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.