Abstract

To improve the performance of sparse Cholesky factorization, existing research divides the adjacent columns of the sparse matrix with the same nonzero patterns into supernodes for parallelization. However, due to the various structures of sparse matrices, the computation of the generated supernodes varies significantly, and thus hard to optimize when computed by dense matrix kernels. Therefore, how to efficiently map sparse Choleksy factorization to the emerging architectures, such as Sunway many-core processor, remains an active research direction. In this article, we propose swCholesky , which is a highly optimized implementation of sparse Cholesky factorization on Sunway processor. Specifically, we design three kernel task queues and a dense matrix library to dynamically adapt to the kernel characteristics and architecture features. In addition, we propose an auto-tuning mechanism to search for the optimal settings of the important parameters in swCholesky . Our experiments show that swCholesky achieves better performance than state-of-the-art implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.