Abstract

Phylogenetics study the evolutionary history of organisms using an iterative process of creating and evaluating phylogenetic trees. This process is very computationally intensive; constructing a large phylogenetic tree requires hundreds to thousands of CPU hours. In this article, we describe an FPGA-based system that can be deployed on AWS EC2 F1 cloud instances to accelerate phylogenetic analyses by boosting performance of the phylogenetic likelihood function, i.e., a widely employed tree-evaluation function that accounts for up to 95% of the overall analysis time. We exploit domain-specific knowledge to reduce the amount of transferred data that limits overall system performance. Our proof-of-concept implementation reveals that the effective accelerator throughput nearly quadruples with optimized data movement, reaching up to 75% of its theoretical peak and nearly 10× faster processing than a CPU using AVX2 extensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.