Abstract
Deep Convolutional Neural Networks (CNNs) are the state-of-the-art systems for image classification and scene understating. They are widely used for their superior accuracy but at the cost of high computational complexity. The target in this field nowadays is its acceleration to be used in real time applications. The solution is to use Graphics Processing Units (GPU) but many problems arise due to the GPU high-power consumption which prevents its utilization in daily-used equipment. The Field Programmable Gate Array (FPGA) is a new solution for CNN implementations due to its low power consumption and flexible architecture. This work discusses this problem and provides a solution that compromises between the speed of the CNN and the power consumption of the FPGA. This solution depends on two main techniques for speeding up: parallelism of layers resources and pipelining inside some layers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.