Abstract

While the research on convolutional neural networks (CNNs) is progressing quickly, the real-world deployment of these models is often limited by computing resources and memory constraints. In this paper, we address this issue by proposing a novel filter pruning method to compress and accelerate CNNs. Our method reduces the redundancy in one convolutional layer by applying sparse subspace clustering to its output feature maps. In this way, most of the representative information in the network can be retained in each cluster. Therefore, our method provides an effective solution to filter pruning for which most existing methods directly remove filters based on simple heuristics. The proposed method is independent of the network structure, and thus it can be adopted by any off-the-shelf deep learning libraries. Evaluated on VGG-16 and ResNet-50 using ImageNet, our method outperforms existing techniques before fine-tuning, and achieves state-of-the-art results after fine-tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.