Abstract

This paper presents our work in developing an application specific multiprocessor system for SAT, utilizing the most recent results such as the development of highly efficient sequential SAT algorithms, the emergence of commercial configurable processor cores and the rapid progress in IC manufacturing techniques. Based on an analysis of the basic SAT search algorithm, we propose a new parallel SAT algorithm that utilizes fine grain parallelism. This is then used to design a multiprocessor architecture in which each processing node consists of a processor and a communication assist node that deals with message processing. Each processor is an application specific processor built from a commercial configurable processor core. All the system configurations are determined based on the characteristics of SAT algorithms, and are supported by simulation results. While this hardware accelerator system does not change the inherent intractability of the SAT problems, it achieves a 30-60x speedup over and above the fastest known SAT solver - Chaff. We believe that this system can be used to expand the practical applicability of SAT in all its application areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.