Abstract

AbstractAccelerated global warming in the late 20th century led to frequent forest-decline events in the Northern Hemisphere and increased the complexity of the relationships between tree growth and climate factors. However, few studies have explored the heterogeneity of responses of tree growth to climate factors in different regions of the Northern Hemisphere before and after accelerated warming. In this study, a total of 229 temperature-sensitive tree-ring width chronologies from nine regions on three continents in the Northern Hemisphere were used in the data analysis performed herein. A bootstrapped correlation analysis method was used to investigate whether the tree growth-climate response changed significantly in different regions between the periods before and after rapid warming. Probability density functions and piecewise linear fitting were used to study the fluctuation characteristics of the tree-ring width indices before and after rapid warming. At the end of the 20th century (from 1977 to 2000), rapid warming significantly promoted the radial growth of trees in different regions of the Northern Hemisphere, but tree radial growth was heterogeneous among the different regions from 1950 to 2000. After 1976, except in central North America and northern Europe, the correlation between tree growth and temperature increased significantly in the Northern Hemisphere, especially in Asia. From 1977 to 2000, tree-ring index and temperature divergences were observed in nine regions with a divergence of 2–5 years. From 1950 to 2000, tree growth tracked better average temperature variability in the Northern Hemisphere than regional temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.