Abstract

We present the first Monte Carlo (MC) code for three-dimensional continuum radiative transfer simulations. Absorption and scattering processes by spherical dust grains are implemented. The dust density distribution as well as the number, spatial configuration, and geometrical shape of the illuminating source(s) can be chosen arbitrarily. The spatial dust temperature distribution, the spectral energy distribution (SED), and the polarization of the emergent radiation can be simulated. Typical astrophysical applications of this code are the simulation of the radiative transfer in the envelope around young stellar objects (YSO) and the dusty environment of active galactic nuclei (AGN). The code can also be used for the calculation of the photon transport in other complicated configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.