Abstract

The family of temporal difference (TD) methods span a spectrum from computationally frugal linear methods like TD(λ) to data efficient least squares methods. Least square methods make the best use of available data directly computing the TD solution and thus do not require tuning a typically highly sensitive learning rate parameter, but require quadratic computation and storage. Recent algorithmic developments have yielded several sub-quadratic methods that use an approximation to the least squares TD solution, but incur bias. In this paper, we propose a new family of accelerated gradient TD (ATD) methods that (1) provide similar data efficiency benefits to least-squares methods, at a fraction of the computation and storage (2) significantly reduce parameter sensitivity compared to linear TD methods, and (3) are asymptotically unbiased. We illustrate these claims with a proof of convergence in expectation and experiments on several benchmark domains and a large-scale industrial energy allocation domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.