Abstract

Neuronal networks established on micro-electrode arrays provide useful models for synaptic plasticity. Whether or not this represents a facet of learning is debated since ex vivo networks are deprived of organismal interaction with the environment. We compared developmental signaling of such networks with and without stimulation with a prerecorded synaptic signal from another mature culture as a model of sensory input. Unstimulated networks displayed a developmental increase in individual signals that eventually declined, yielding a pattern containing organized bursts of signaling. Minimal stimulation, to model the onset of sensory input hastened the onset of developmental signaling. However, the overall developmental pattern of stimulated networks, including the total number and type of signals as well as the length of this developmental period, was identical to that of unstimulated networks. One interpretation of these findings is that ongoing plasticity may be essential to establish an appropriate platform for learning once sensory input ensues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.