Abstract

We develop an Accelerated Back Pressure (ABP) algorithm using Accelerated Dual Descent (ADD), a distributed approximate Newton-like algorithm that only uses local information. Our construction is based on writing the backpressure algorithm as the solution to a network feasibility problem solved via stochastic dual subgradient descent. We apply stochastic ADD in place of the stochastic gradient descent algorithm. We prove that the ABP algorithm guarantees stable queues. Our numerical experiments demonstrate a significant improvement in convergence rate, especially when the packet arrival statistics vary over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.