Abstract

The localized stress and strain field simulation results are critical for understanding the mechanical properties of materials, such as strength and toughness. However, applying off-the-shelf machine learning or deep learning methods to a digitized microstructure restricts the image samples to be of a fixed size and also lacks interpretability. Additionally, existing methods that utilize deep learning models to solve boundary value problems require retraining the model for each set of boundary conditions. To address these limitations, we propose a customized Pixel-Wise Convolutional Neural Network (PWCNN) to make fast predictions of stress and strain fields pixel-by-pixel under different loading conditions and for a wide range of composite microstructures of any size (e.g., much larger or smaller than the sample on which the PWCNN is trained). Through numerical experiments, we show that our PWCNN model serves as an alternative approach to numerical solution methods, such as finite element analysis, but is computationally more efficient, and the prediction errors on the test microstructure are around 5%. Moreover, we also propose an interpretable machine learning framework to facilitate the scientific discovery of why certain microstructures have better or worse performance than others, which has important implications in the design of composite microstructures in advanced manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.