Abstract

To determine actions of the prototype adenosine-regulating agent, acadesine (5-amino-1-[beta-D-ribofuranosyl]imidazole-4-carboxamideriboside; AICAR), on intestinal barrier function after hemorrhagic shock and fluid resuscitation, three series of experiments were performed to measure functional (series 1: intestinal permeability and intramural blood flow), structural (series 2: histology), and biochemical (series 3: tissue concentrations of adenine nucleotides and metabolites) changes. Prospective, controlled animal study. University laboratory; juvenile crossbred pigs of either gender. Either AICAR or its saline vehicle were intravenously administered 30 mins before 40% hemorrhage. After 1 hr shock, shed blood plus crystalloid was administered for resuscitation. Data were collected for 1 hr thereafter. In series 1, permeability of the ileum was measured by assaying the portal venous concentration of fluorescein-labeled dextran after placement of this tracer in the lumen. In addition, serosal and mucosal blood flow were monitored with laser-Doppler probes. With vehicle, hemorrhage and resuscitation increased the dextran concentration three-fold and decreased blood flow 50% of the baseline values (both p < .05). AICAR attenuated the permeability increase (p < .05) and attenuated mucosa, but not serosal, ischemia (p < .05). Similar effects were observed with a structurally dissimilar compound-- 4-amino-1-(5-amino-5-deoxy-1-beta-D-ribofuranosyl)-3-bromo-pyrazolo [3,4-d] pyrimidine, a specific adenosine kinase inhibitor-as well as continuous intra-arterial infusion of adenosine. In series 2, AICAR ameliorated the mucosal damage caused by shock/resuscitation (p < .05). In series 3, AICAR increased ileal tissue adenine nucleotides and metabolites during the shock period (p < .05). AICAR attenuated gut permeability changes, increased mucosal perfusion, and increased tissue adenine nucleotides, which is consistent with preserved intestinal barrier function after hemorrhage and fluid resuscitation. In context with previous studies from this laboratory, these results provide further evidence for a role for adenosine as an endogenous anti-inflammatory autacoid after shock and trauma. Further study is needed to determine the therapeutic potential of adenosine-regulating agents in resuscitation fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.