Abstract
This paper develops a numerical simulation model to research the deformable particle-particle interactions caused by dielectrophoresis (DEP) under AC electric fields. The DEP force is calculated by using Maxwell stress tensor method, and the hydrodynamic force is obtained by calculating the hydrodynamic stress tensor. Simulation results show that the DEP interactive motion will facilitate the particles forming particle chains that are parallel to the electric field, and the particles with low shear modulus present a lower x-component velocity. Also, the electric field intensity and particles radius have some effects on the DEP motions, and for different particles, smaller particles with larger electric field intensity easily reach a larger velocity. The numerical research may provide universal guidance for biological cells manipulation and assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.