Abstract

PurposeWomen in Western Europe wore empire style robes which were made with a light and thin fabric revealing their body. To stress the silhouette of their body, they applied oil to it or sprayed water on the robe so that it would cling to the body, and most women suffered from muslin disease, meaning flu and tuberculosis of the lungs in winter season. The purpose of this paper is to examine the thermal insulation of the robe with spencer jacket in dry and wet environment through thermal manikin experiments.Design/methodology/approachThree kinds of spencer jacket were made based on historical evidence and data, and experimental work for thermal insulation was conducted using a thermal manikin. The study measured the total thermal resistance of dress-jacket set: weight of the clothing before and after wetting, thermal insulation of the spencer jackets and set of clothing in dry and wet conditions, electric power consumption of the set of clothing in the wet condition and temperature inside the clothing and surface temperature of the wet set of clothing.FindingsThe thermal insulation of the robe with spencer jacket in the wet condition was in the range of 0.135-0.144 clo, which was about 80 percent lower than the range of values of 0.73-0.79 clo measured in the dry condition. This means that women felt uncomfortable in wetting condition or raining environment even when wearing the robe with a spencer jacket. Thermal insulation of clothing was dependent to the air gap under garment, clothing layers, ventilation through fabric and body part.Originality/valueIn this study, the thermal insulation of an empire style robe with spencer jacket in wet condition was measured using a dry thermal manikin, not with the sweating manikin. The authors measure the electric power consumption according to drying time of the clothing set at the body parts. In order to study the effect of different materials and clothing wetting, comparison experiments were conducted in dry and wet conditions using the rinse cycle of washing machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.