Abstract

The threat of microplastics (MPs) in aquatic systems is almost a new challenge in environmental management. The municipal wastewater treatment plants (WWTPs) act both as collectors of MPs from anthropic use and as a source to natural environments. This study is aimed to determine the abundance, characteristics, and removal of MPs in a municipal WWTP with conventional activated sludge process. Particle size/type, influent loads, and removal rate of MPs in bar screen, grit chamber, primary sedimentation, returned activated sludge, and secondary clarification units of this WWTP were studied by collecting composite samples from wastewater and sludge over a 3-month sampling campaign. Suspected MP particles were counted by light microscopy and characterized using SEM, EDS, FTIR, and TGA-DSC techniques. The mean total MPs, fibers, and fragment concentration after the grit chamber were 6608, 3594, and 3014 which were reduced to 1855, 802, and 1053 particles/L in the effluent, respectively. The sludge retention of total MPs, fibers, and fragments were 8001, 3277, and 4719 particles/L, respectively. The overall efficiency of WWTP with an activated sludge process to remove MPs was 64% and it removed 66.6% and 60% of fibers and fragments, respectively. Fibers were the dominant shape for the collected samples after the grit chamber and fragments were prevalent in the effluent. Polyethylene polymer was detected in most wastewater samples. Existing treatment processes are effective in the removal of MP particles but still act as a potential source to the aquatic ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.