Abstract

The measures of most-probable-number and restriction fragment length polymorphism analysis were used to analyze the abundance and diversity of ammonia-oxidizing bacteria in sediment of a Chinese shallow eutrophic urban lake (Lake Yuehu). Among the 5 sampling sites, ammonia concentration in interstitial water was positively proportional not only to the content of organic matter, but also to ammonia-oxidizing bacteria numbers (at a magnitude of 105 cells g-1 dry weight) in sediment significantly. Furthermore, the diversity of ammonia-oxidizing bacteria were determined by means of PCR primers targeting the amoA gene with five gene libraries created and restriction pattern analysis. The 13 restriction patterns were recorded with 4 ones being common among all sampling sites. The 8 restriction patterns including 4 unique ones were found at the site with the highest NH4+ concentrations in interstitial water, while, there were only common patterns without unique ones at the site with the lowest NH4+ concentrations in interstitial water. Phylogenetic analysis showed that the amoA fragments retrieved belong to Nitrosomonas oligotropha & ureae lineage, N. europaea lineage, N. communis lineage and Nitrosospira lineage, most of which were affiliated with the genus Nitrosomonas. The N. oligotropha & ureae-like bacteria were the dominant species. Thus, the abundance and diversity of sediment AOB is closely linked to ammonium status in eutrophic lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.