Abstract

Introduction: Cognition and memory deficits are common sequelae following middle cerebral artery (MCA) stroke, one of the most common strokes in humans. However MCA stroke does not compromise the structural integrity of the hippocampus, which is highly involved in memory function, because the MCA does not supply blood flow to the hippocampus. We previously reported on the acute effect of MCA stroke, where we observed increased hippocampal activity and cortico-hippocampal communication. Here we investigate chronic changes to local oscillations and cortico-hippocampal communication following MCA occlusion in rats two weeks and one month following stroke. Hypothesis: Cortical stroke affects remote brain regions, disrupting hippocampal function and cortico-hippocampal communication. Methods: We subjected male rats (n=28) to distal MCA occlusion compared to controls (n=19). We recorded local field potentials simultaneously from cortex and hippocampus two weeks and one month following stroke using 16-site linear electrode arrays under urethane anesthesia. We analyzed signal power, brain state, CFC, and sharp wave SPW-Rs to assess hippocampal function and cortico-hippocampal communication. Results: Our results show disruptions to local oscillations; lowered delta (1-3 Hz) signal power in the cortex and hippocampus, increased signal power in gamma (30-60 Hz) and high gamma (60-200 Hz) in cortex and hippocampus. Theta/delta brain state is disrupted, and SPW-Rs increase in power at two weeks, before returning to baseline levels at one month. Communication is also disrupted; Theta-gamma coupling, a measure of information being communicated between regions, breaks down after stroke. Conclusions: These results suggest that chronic stroke causes significant changes to hippocampal function, which can be characterized by these electrophysiological biomarkers, establishing putative targets for targeted stimulation therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.