Abstract

Mitochondrial (MT) dysfunction plays an important role in the pathophysiology of myocardial ischemia/reperfusion injury (I/R). We recently showed that leptin, via its actions in the central nervous system (CNS), improves left ventricular (LV) function in a model of heart failure induced by permanent ligation of the left anterior descending coronary artery (LAD). In the present study, we examined if the CNS effects of leptin protect against myocardial ischemia/reperfusion (I/R) injury, and whether chronic intracerebroventricular (ICV) leptin infusion increases MT function and biogenesis in the non-infarcted area of the LV that is at risk but still viable. Male Wistar rats were instrumented with an ICV cannula in the brain lateral ventricle. After recovery and baseline assessment of cardiac function by echocardiography (ECHO), myocardial I/R was induced by temporary (60 min) ligation of the LAD. Vehicle (saline, 0.5 μL/hr) or leptin (0.62 μg/day) was infused chronically for 28 days starting 20 min after reperfusion using osmotic minipumps connected to the ICV cannula. ECHO assessment of cardiac function was performed every week. At the end of week 4, +dP/dt max and Tau were accessed by LV catheterization. Hearts were then collected for evaluation of MT function in isolated cardiac fibers using Oroboros oxygraphy-2k respirometer. ICV leptin treatment improved systolic and diastolic function as evidenced by increased ejection fraction 4 weeks after I/R (46±3 vs. 26±3 %), stroke volume (353±19 vs. 193±27 μL), +dP/dt max (10387±1686 vs. 5022±442 mmHg/s) and reduced Tau (6.5±0.3 vs. 8±0.3 ms) when compared with vehicle-treated rats. In addition, ICV leptin infusion significantly increased ATP-linked respiration (55±3 vs. 39±1 %), reduced proton leak (45±3 vs. 61±1 %), and improved MT reserve capacity (42±5 vs. 27±2 %). Improved MT function was associated with increased MT Complex I- mediated respiration (47±6 vs. 26±1 pmolO 2 /s - mg). ICV leptin treatment also increased PGC1 α protein expression and COX3 gene expression, indicating enhanced MT biogenesis. These results demonstrate that chronic ICV leptin infusion improves cardiac function following I/R injury and suggests that leptin’s CNS-mediated cardioprotective effects may involve improved myocardial MT function and biogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.