Abstract
Abstract Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here we uncover that tumor cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP-1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, our findings reveal the unexpected roles of tumor cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and therapeutic targets for sustaining host anti-tumor immunity. Citation Format: Ping-Chih Ho. Unconventional ER stress response pro-tumorigenic polarization and survival in TAMs [abstract]. In: Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; 2021 Oct 5-6. Philadelphia (PA): AACR; Cancer Immunol Res 2022;10(1 Suppl):Abstract nr IA01.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.