Abstract

This article considers some known abstract domains for affine-relation analysis (ARA), along with several variants, and studies how they relate to each other. The various domains represent sets of points that satisfy affine relations over variables that hold machine integers and are based on an extension of linear algebra to modules over a ring (in particular, arithmetic performed modulo 2 w , for some machine-integer width w ). We show that the abstract domains of Müller-Olm/Seidl (MOS) and King/Søndergaard (KS) are, in general, incomparable. However, we give sound interconversion methods. In other words, we give an algorithm to convert a KS element v KS to an overapproximating MOS element v MOS —that is, γ ( v KS ) ⊆ γ ( v MOS —as well as an algorithm to convert an MOS element w MOS to an overapproximating KS element w KS —that is, γ ( w MOS ) ⊆ γ ( w KS ). The article provides insight on the range of options that one has for performing ARA in a program analyzer: —We describe how to perform a greedy, operator-by-operator abstraction method to obtain KS abstract transformers. —We also describe a more global approach to obtaining KS abstract transformers that considers the semantics of an entire instruction, basic block, or other loop-free program fragment. The latter method can yield best abstract transformers, and hence can be more precise than the former method. However, the latter method is more expensive. We also explain how to use the KS domain for interprocedural program analysis using a bit-precise concrete semantics, but without bit blasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.