Abstract

Abstract CRISPR/Cas9 has emerged as a transformative new tool to systematically probe gene function. In this study, we compare the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies by performing parallel deep-coverage shRNA and CRISPR screens targeting 2722 genes across several cancer cell lines. CRISPR-based dropout screens identified more lethal genes compared to RNAi in all five cancer models, indicating that the identification of many cellular dependencies may require full gene inactivation, as induced by CRISPR but not RNAi. However, in two aneuploid cancer models we found that all genes within highly amplified regions, including non-expressed genes, scored as lethal by CRISPR, revealing an unanticipated class of false-positive hits in CRISPR-based screens. Using a CRISPR tiling array that encompassed all possible sgRNAs against the coding regions of 139 genes, sgRNAs targeting essential domains provide the most robust dropout phenotypes, suggesting that this approach might be used to define the protein domains that are required for cancer dependence. Collectively, these findings demonstrate the utility of CRISPR-based screens in the identification of cancer-dependent genes, but also reveal the need to carefully control for false-positive results especially in chromosomally unstable cancer lines. Note: This abstract was not presented at the conference. Citation Format: Diana Munoz, Frank P. Stegmeier, Michael Schlabach. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions [abstract]. In: Proceedings of the AACR Precision Medicine Series: Opportunities and Challenges of Exploiting Synthetic Lethality in Cancer; Jan 4-7, 2017; San Diego, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2017;16(10 Suppl):Abstract nr B21.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.