Abstract

Abstract Tarloxotinib bromide (T) is a prodrug that releases an irreversible EGFR/HER2 inhibitor (T-TKI) under hypoxic conditions. NSCLC is known to be a hypoxic disease and wild type (WT) EGFR is upregulated by multiple hypoxia-driven mechanisms (Curr Pharm Des, 19:907). Mutant EGFR NSCLC is commonly heterozygous and may result in maintenance of WT EGFR signalling (Can Sci, 103:1946; PloS One 8:e54170). Clinical studies indicate NSCLC patients harbouring WT/mut heterozygous EGFR have significantly poorer ORR, PFS and OS on treatment with EGFR-TKI (Can Sci, 99:929). Other mechanisms of resistance to EGFR-TKI include 50-60% with T790M EGFR mutation, 8-13% with HER2 amplification, while 15-20% lack identifiable mutation/amplification events (Nat Rev Clin Onc, 11:473). The combination of cetuximab/afatinib provides an ORR of 25% and PFS of 4.6 months in T790M-negative NSCLC suggesting the persistence of HER signalling plays a role in resistance. However the high proportion of Grade 3/4 toxicity seen with cetuximab/afatinib indicates an opportunity for dose-intensification with an improved therapeutic index (Can Discov, 4:1). In addition, early clinical data on resistance to the 3rd Gen (WT EGFR-sparing) TKI rociletinib, fails to identify further mutations by NGS in some patients and describes reversion to EGFR-WT (T790) status (Can Discov, 5:713). Collectively these data support the hypothesis that WT EGFR heterozygosity may be a mechanism of resistance to current EGFR-TKI. Current EGFR-TKI lack the therapeutic index to silence WT EGFR signalling in tumors due to on-target skin/GI toxicities (Ann Oncol 18:761). Therefore we sought to examine the potency of T-TKI relative to erlotinib, afatinib and AZD9291 in five human cancer cell lines expressing WT EGFR (H1838, H2073, H1648, H125 and A431). In antiproliferative assays T-TKI was more dose-potent than erlotinib (25- to 110-fold) afatinib (4- to 32-fold) and AZD9291 (120- to 71-fold). This activity correlated with inhibition of WT EGFR phosphorylation and downstream MAPK signalling. We used a prototypic WT EGFR driven xenograft model (A431) to benchmark T activity against each EGFR-TKI by ‘retrotranslation’ of reported plasma exposure for each agent in human subjects back to the xenograft model. Only treatment with clinically relevant doses and schedules of T was associated with tumor regression and durable inhibition of WT EGFR tumor phosphorylation. Consistent with these findings, T treatment can also regress the WT EGFR NSCLC tumor models H125 and H1648, demonstrating T provides the necessary therapeutic index to inhibit WT EGFR in vivo. The transfection of WT EGFR into mutant EGFR NSCLC line PC9 (vs GFP control) conferred TGFα dependent induction of p-EGFR that was supressed by T-TKI but resistant to inhibition by erlotinib, afatinib or AZD9291. This was associated with reduced antiproliferative activity for EGFR-TKIs. Collectively these data indicate T-TKI is a dose-potent inhibitor of WT EGFR signalling and the prodrug T may possess the therapeutic index to silence WT EGFR signalling in xenograft models at plasma exposure levels achieved in a human Ph1 trial. T is under investigation in a Phase 2 clinical trial for EGFR mutant, T790M-negative, NSCLC patients who have progressed on EGFR-TKI (NCT02454842). Citation Format: Shevan Silva, Victoria Jackson, Christopher Guise, Maria Abbattista, Matthew Bull, Angus Grey, Robert Anderson, Amir Ashoorzadeh, Charles Hart, Tillman Pearce, Adam V. Patterson, Jeff B. Smaill. Preclinical efficacy of tarloxotinib bromide (TH-4000), a hypoxia-activated EGFR/HER2 inhibitor: rationale for clinical evaluation in EGFR mutant, T790M-negative NSCLC following progression on EGFR-TKI therapy. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr A67.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.