Abstract

Abstract The adhesion scaffolding protein NEDD9 was identified as potential pro-metastatic gene in several cancers. The molecular mechanisms of NEDD9-driven metastasis are still unknown. In this study, we show that expression of NEDD9 positively correlates with the invasive stage of breast cancer. We show that NEDD9 localizes to invadopodia and endosomes. Notably, NEDD9 depleted cells have increased levels of inactive surface receptors due to increase in fast recycling of Rab4 and Rab5 positive vesicles. Mechanistically, we found that NEDD9 binds to and scaffolds the Arf6 specific GAP - ASAP3, decreasing Arf6 activity. Thus, depletion of NEDD9 leads to activation of Arf6. Inhibition of Arf6 or re-expression of NEDD9 in shNEDD9 cells was sufficient to restore recycling rates, decrease the number of Rab4 and 5 positive vesicles and the invasive properties of tumor cells. Thus, in this work, we uncover the mechanistic basis of NEDD9-driven invasion and identify a new role for NEDD9 in Arf6-dependant endocytosis. Citation Format: Elena N. Pugacheva, Yuriy Loskutov, Sarah McLaughlin, Polina Kozyulina, Varvara Kozyreva, Ryan Ice, Mark Culp, Robert Wysolmerski, Scott Weed, Alexey Ivanov. NEDD9 promotes cell invasion through modulation of ARF6 activity and endocytic recycling. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Invasion and Metastasis; Jan 20-23, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;73(3 Suppl):Abstract nr A66.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.