Abstract

Abstract Background: Targeting HER2 with lapatinib (L), trastuzumab (T), or the LT combination, is effective in HER2+ breast cancer (BC), but acquired resistance commonly occurs. In our 12-week neoadjuvant trial (TBCRC006) of LT without chemotherapy in HER2+ BC, the overall pathologic complete response (pCR) rate was 27%. To investigate resistance mechanisms, we developed 10 HER2+ BC cell line models resistant (R) to one or both drugs (LR/TR/LTR). To discover potential predictive markers/therapeutic targets to circumvent resistance, we completed genomic profiling of the cell lines and a subset of pre-treatment specimens from TBCRC006. Methods: Parental (P) and LR/TR/LTR lines of 10 cell line models were profiled with whole exome/RNA sequencing. Mutations detected in R lines but not in P lines of the same model were identified. Mutation-specific Q-PCR was designed for sensitive quantification. Resistant cell and xenograft tumor growth were measured in response to drugs. Whole exome sequencing (>100X) and Ampliseq of 17 baseline tumor/normal pairs from TBCRC006 were performed. Results: We found and validated the HER2 L755S mutation in the BT474/ATCC-LTR line and BT474/AZ-LR line (in ∼30% of DNA/RNA), in which the HER pathway was reactivated for resistance. Overexpression of this mutation was previously shown to induce LR in HER2-negative BC cell lines, and resistant growth of BT474/AZ-LR line is significantly inhibited by HER2-L755S-specific siRNA knock-down, suggesting its role as an acquired L/LT resistance driver in HER2+ BC. Sequencing of BT474/AZ-LR single cell clones found the mutation in ∼30% of HER2 copies in every cell. Using mutation-specific Q-PCR, we found statistically higher HER2 L755S levels in two BT474 parentals compared to P lines of SKBR3, AU565, and UACC812. These data suggest that HER2 L755S resistant subclones preexist in the BT474 parentals and were selected by L treatment to become the major clone in the two R lines. The HER1/2 irreversible tyrosine kinase inhibitor (TKI) afatinib (Afa) robustly inhibited growth of BT474/AZ-LR and BT474/ATCC-LTR cells (IC50: Afa 0.02μM vs. L 3 μM) and BT474/AZ-LR xenografts. Whole exome sequencing/Ampliseq of TBCRC006 found the HER2 L755S mutation in 1/17 primaries. This patient did not achieve pCR. The variant was present in 2% of DNA on both platforms, indicating a subclonal event of the resistance mutation. Conclusion: Acquired L/LT resistance in the two BT474 R lines is due to selection of HER2 L755S subclones present in parental cells. The higher HER2 L755S levels in BT474 parentals compared with other parentals, and detection of its subclonal presence in a pre-treatment HER2+ BC patient, suggest that sensitive mutation detection methods will be needed to identify patients with potentially actionable HER family mutations in primary tumor. Treating this patient group with an irreversible TKI like Afa may prevent resistance and improve clinical outcome of this subset of HER2+ BC. Citation Format: Xiaowei Xu, Agostina Nardone, Huizhong Hu, Lanfang Qin, Sarmistha Nanda, Laura Heiser, Nicholas Wang, Kyle Covington, Edward Chen, Alexander Renwick, Tamika Mitchell, Marty Shea, Tao Wang, Carmine De Angelis, Alejandro Contreras, Carolina Gutierrez, Suzanne Fuqua, Gary Chamness, Chad Shaw, Marilyn Li, David Wheeler, Susan Hilsenbeck, Mothaffar Fahed Rimawi, Joe Gray, C.Kent Osborne, Rachel Schiff. Clonal evolution of the HER2 L755S mutation as a mechanism of acquired HER-targeted therapy resistance. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 737. doi:10.1158/1538-7445.AM2015-737

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.