Abstract
In the obese and diabetic heart, an imbalance between fatty acid uptake and fatty acid oxidation (FAO) promotes the development of cardiac lipotoxicity. We previously showed that cardiac specific deletion of acetyl CoA carboxylase 2 (ACC2) was effective in increasing myocardial FAO while maintaining normal cardiac function and energetics. In this study, we tested the hypothesis that ACC2 deletion in an adult heart would prevent the cardiac lipotoxic phenotype in a mouse model of diet-induced obesity. ACC2 flox/flox (CON) and ACC2 flox/flox-MerCreMer+ (iKO) after tamoxifen injection were subjected to a high fat diet (HFD) for 24 weeks. HFD induced similar body weight gain and glucose intolerance in CON and iKO. In isolated Langendorff-perfused heart experiments, HFD feeding increased FAO 1.6-fold in CON mice which was increased to 2.5-fold in iKO mice compared with CON on chow diet. Fractional shortening was significantly decreased in CON-HFD (32.8±2.8% vs. 39.2±3.2%, p< 0.05, n=5-6), but preserved in iKO-HFD mice (42.8±2.3%, vs. 38.5±1.4%, n=6), compared to respective chow fed controls. Diastolic function, assessed by E’/A’ ratio using tissue Doppler imaging, was significantly decreased in CON-HFD mice (1.11±0.08 vs. 0.91±0.09, p<0.05 n=5-6), while no difference was observed in iKO-HFD compared to iKO-chow (1.10±0.03 vs. 1.09±0.04, n=6). Heart weight /Tibia length ratio was significantly higher in CON than iKO mice after HFD feeding (7.19±0.22 vs. 6.47±0.28, p<0.05, n=6). Furthermore, HFD induced mitochondria super complex II, III and V instability, which was attenuated in iKO-HFD mice. These data indicate that elevated myocardial FAO per se does not cause the development of cardiac dysfunction in obese animals. In fact, enhancing FAO via ACC2 deletion prevents HFD induced cardiac dysfunction and attenuates pathological hypertrophy. These effects may be mediated, in part, by maintenance of mitochondrial integrity. Taken together, our findings suggest that promoting cardiac FAO is an effective strategy to resist the development of cardiac lipotoxicity during diet-induced obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.