Abstract
Jijun Hao, Cristi L. Galindo, Radwan N. Safa, Truc-Linh Tran, Douglas B. Sawyer Neuregulin-1 (NRG-1) plays a critical role in heart development by signaling through type I receptor tyrosine kinases in the erbB family (erbB2, erbB3 and erbB4). Mice with disrupted expression of NRG-1, ErbB2, ErbB3 or ErbB4 die in utero with failure of cardiac development. We have previously shown that NRG-1 has distinct effects on two embryonic progenitor cell populations that express ErbB2 and ErbB3 receptors. In an embryonic endothelial progenitor cell line (eEPCs) NRG-1 treatment induces phosphorylation of Akt, GSK-3β, and Erk1/2, and protects eEPCs against serum deprivation-induced apoptosis. In embryonic stem cells (ESCs) we find that NRG-1 treatment from day 0∼2 induces cardiomyocyte formation by day 8 in culture, and when ErbB3 is knocked down in the ESCs, NRG-1 fails to promote cardiomyogenesis. To understand early molecular events that might regulate these distinct effects, we analyzed global transcriptional changes induced by NRG-1 in both eEPCs and ESCs using microarrays. There were only 244 significantly differential (p value < 0.05, fold-change > 1.5) genes detected in NRG-1-treated ESCs, while NRG-1 induced differential expression of 1,547 transcripts in eEPCs. Based on functional analysis, the most significantly over-represented function (Fishers Exact Test, p value with FDR < 0.05) in ESCs was “cell morphogenesis during differentiation”. In eEPCs, genes regulated via Ras/MAPK signaling were altered, as were those downstream of the Akt-PI3K pathway and calcium signaling. For both cell lines, the most statistically significant transcription factor identified as a regulator of the genes altered in response to NRG-1 was SRF, consistent with a role for NRG-1 in heart development and regeneration. Based on the results of this study, we constructed a putative signaling pathway whereby NRG mediates cardiomyogenesis in pluripotent stem cells that correlates with phenotypic observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.