Abstract

The kidneys play an important role in cardiovascular disease (CVD), where renal co-morbidities accompany CVD in a large proportion of patients thus complicating their treatment regimen. Moreover, the incidence of acute renal injury after cardiac surgery plays an important role in disease progression. Emerging data suggest the importance of understanding the mechanisms of cardio-renal injury and the development of novel therapies that can be safely used with cardiovascular and renal co-existing pathologies. Although the role of G-protein coupled receptors (GPCRs) in CVD has been broadly recognized, their role in renal injury remains poorly understood. We have found, in a chronic mouse model of heart failure, attenuated renal fibrosis and attenuated pathologic RAAS activation by the small molecule GPCR-Gβγ inhibitor “gallein”. To investigate the direct effects of GPCR-Gβγ inhibition on renal injury, we utilized an acute renal ischemia-reperfusion (RIR) mouse model. Gβγ inhibition by gallein pretreatment attenuated the histopathological profile of RIR, including attenuation of tubular hypertrophy, apoptosis, cast formation, and tissue Lipocalin2 expression. This was accompanied by attenuated inflammation, reflected by reduced CCL2 and ICAM1 gene expression and cellular infiltration, in addition to reduced Collagen III gene expression. These preliminary results suggest a promising protective role for Gβγ inhibition in renal injury and remodeling. Future mechanistic investigation of this possible protective effect will provide better understanding of the role of GPCR-Gβγ signaling in cardio-renal injury and remodeling and possible novel therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.