Abstract

Abstract With advances in high-throughput sequencing technologies and analytical tools, genomic analysis of tumors has led to the identification of various important somatic mutations that shed light on diagnosis, prevention, and treatment for cancer. However, detecting somatic variants is not a trivial task in terms of the technical aspects (e.g. filtering germline events and removing a variety of noises in tumor samples) and computational resources to handle large-scale cohort analysis. There is also a demand for maintaining stable software versions and the workflows for studies over extended periods of time, that need consistency and traceability, such as clinical trials. We introduce here, the Translational Analysis Group (TAG), a team which deploys, validates, and conducts scalable analytical workflows in a secure, cloud-based environment. We maintain 29 well-tested workflows with best practice methods and ample resources for both somatic and germline analysis. Our cloud platform, FireCloud, enables us to run workflows at any scale. Since May 2017, our team has performed nearly 10,000 analyses for mutation detection (SNV, InDel, CNV, and SV) and cohort analysis on tumor samples and cell-free DNA samples. TAG offers a range of options for somatic and germline variant detection, from legacy pipelines through recently validated contemporary pipelines to allow for continuity across long running projects. Citation Format: Junko Tsuji, Andrew Hollinger, Alyssa MacBeth, Brian R. Grander, Micah Rickles-Young, Tera Bowers, Carrie Cibulskis, Niall Lennon. Somatic analysis services with best practice workflows in a cloud-based platform [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2485.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.