Abstract
Background: Bicuspid aortic valve disease (BAV), the most common congenital cardiovascular malformation, has an incidence of 0.5–1.0% of live births. While most cases of BAV appear to be sporadic, familial inheritance patterns have been observed consistent with autosomal dominant inheritance with variable penetrance. However, little is known about specific genetic loci responsible for familial BAV. Here, we performed linkage analysis on a large multi-generational pedigree affected with BAV. Methods: We identified a large, five-generation pedigree (136 family members) with 10 individuals having BAV. Two-dimensional echocardiography was used to assign aortic valve phenotype. Genome-wide linkage analysis using 430 microsatellite markers (Marshfield Clinic) and fine mapping using 100 single nucleotide polymorphisms (Affymetrix) on chromosome 9 was performed on genomic DNA from all available family members. Logarithm of odds (LOD) scores of >2.0 were considered suggestive of linkage. Comprehensive splice site/open reading frame mutational analysis of candidate genes residing in the putative locus is underway using PCR, DHPLC, and DNA sequencing. A candidate gene, KLF9, Krüppel-like factor 9 was analyzed for mutations because of its role in cardiogenesis. Results: Multi-point genome-wide linkage analysis demonstrated a 7 cM region on chromosome 9q21 that was suggestive of linkage for familial BAV with a maximum multipoint LOD score of 2.8 flanked by the microsatellite markers GATA7D12 and D9S1834. This region contains several candidate genes with biological plausibility for BAV phenotype. KLF9- encoded Krüppel-like factor 9, localized to chromosome 9q21, was targeted as a prime candidate gene for familial BAV. However, no mutations involving the translated exons of KLF9 were detected. Further fine mapping studies and candidate gene analysis are currently underway. Conclusions: We report a novel susceptibility locus on chromosome 9q21 for BAV in a large multi-generational family. Although coding region mutations in KLF9 are not responsible for BAV in this pedigree, several candidate genes with biological plausibility for the development of congenital BAV lie within this region and warrant further scrutiny.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.