Abstract

Introduction: Iron is essential for the activity of several cellular proteins, but excess free iron can cause cellular damage through production of reactive oxygen species (ROS). Iron accumulation in mitochondria, the major site of cellular iron homeostasis, leads to cardiomyopathy. However, it is not known whether a reduction in baseline mitochondrial iron (as opposed to iron in other cellular compartments) can protect against ischemia-reperfusion (I/R) injury in the heart. We hypothesized that since mitochondria are the major site of iron homeostasis and that mitochondrial iron can lead to oxidative damage, a reduction in mitochondrial iron at baseline would be sufficient to protect against I/R injury. Results: Transgenic (TG) mice with cardiomyocyte-specific overexpression of the mitochondrial iron export protein ATP-binding cassette (ABC)-B8 had significantly lower mitochondrial iron in the heart than nontransgenic (NTG) littermates at baseline, but their cardiac function and the expression of key antioxidant systems were similar to NTG littermates. In response to I/R, TG mice displayed significantly less apoptosis and lipid peroxidation products and better preserved cardiac function than NTG littermates, suggesting that a reduction in mitochondrial iron protects against I/R injury. To confirm these results, we next took a pharmacological approach to assess the effects of a reduction in mitochondrial vs cytosolic iron on the response to I/R using 2,2’-bipyridyl (BPD, a mitochondria-accessible iron chelator) and deferoxamine (DFO, an iron chelator that can only reduce cytosolic iron). Mice pretreated with BPD but not DFO are protected against I/R injury. In addition, BPD but not DFO treatment in rat cardiomyoblast H9C2 cells significantly lowered chelatable mitochondrial iron and protected against H2O2 induced cell death. These results suggest that a reduction in baseline mitochondrial, but not cytosolic, iron is sufficient to protect against I/R injury. Conclusions: Our findings demonstrate that selective reduction in mitochondrial iron is protective in I/R injury. Thus, targeting mitochondrial iron with selective iron chelators may provide a novel approach for treatment of ischemic heart disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.